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In modern hydraulic turbines, there occur unsteady phenomena whose character are deter- 
mined by the laws of acoustics. Theoretical investigation of these phenomena is in general 
a fairly difficult problem, due to the complex geometry of the noncirculating part: of the 
turbine. Description of these phenomena is significantly simplified for low-frequency os- 
cillations, making it possible to obtain a number of results of practical interest for en- 
gineering calculations. However, work in this area (for example, [i, 2]) is I as a rule con- 
fined within the framework of a one-dimensional statement of the appropriate problem. In 
addition, because of its interaction with the turbine, both the steady and the unsteady 
components of the fluid flow becomes highly nonuniform. 

In this work, the effect of twisted turbine flow on the character of the low-frequency 
hydroacoustic oscillations in the noncirculating part of the turbine is studied. 

i. Fundamental Assumptions. We consider free hydroacoustic oscillations of the fluid 
in the noncirculating part of a hydraulic turbine. A diagram of the vertical cross section 
of the noncirculating part is shown in Fig. la (I is the water intake pipe; 2 the volute 
chamber; 3 the discharge pipe), while Fig. ib shows a horizontal cross section of the volute 
chamber in which the turbine is located. We introduce the natural coordinate system fixed 
to the line representing the geometric locus of the centers of the cross sections of the non- 
circulating part. The origin of the coordinate system is placed at the entrance to the dis- 
charge pipe section, and the positive direction of the axis is taken to be that of the fluid 
flow. As the characteristic geometric dimension, we take the length of the mean chord of a 
turbine blade b, and we assume that the following estimate is valid for the geometric dimen- 
sions of all other elements of the noncirculating part: 

lo = O(b), R~ = O(b) ( i=1 ,  2); (1 .1)  

b ~12 ~ ll, (1 .2)  

where R~, R 2 are the outer and inner radii of the turbine's working impeller; ~i is the 
length of the water intake pipe, ~2 that of the discharge pipe; and ~0 is the effective 
length of the volute chamber, whose value will be determined from the solution to the prob- 
lem. 

Assuming the cross-sectional areas of the intake and discharge pipes ~(s) vary only 
slightly and reasonably smoothly, we take for simplicity 

~(s)=O(b2)=const for -(loil,)<s<-lo, O < s < / 2  (1 .3 )  

(s i s  the  arc  l eng th  c o o r d i n a t e  of  the  n o n c i r c u l a t i n g  s e c t i o n ) .  

We assume that the fluid is ideal, and that its motion is isentropic, and in addition, 
is irrotational in the intake pipe. We also assume that there are no body forces. Finally, 
assuming that the characteristic dimension determining the frequency of the characteristic 
oscillations is the length of the intake pipe, we write the oscillation frequency, in ac- 
cordance with (1.2), as 

k=-y=2~ <<I (1.4) 

(m is the circular frequency of oscillation; I the wavelength; and c is the sound speed in 
the fluid). 

2. Problem Statement. In the fluid flow region V (in the noncirculating section), we 
seek the characteristic frequencies and the characteristic functions of the free oscillations, 
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which satisfy the following linearized system of equations based On the assumptions of Sec. i: 

oo [Ou'/ot + (Uov) u' +(u'V)Uo] + p'(UoV)Uo = _vp,; (2 .1 )  
Op'/Ot + V (9oU' + o'Uo) = O; ( 2 . 2 )  

P' = P '/c2. ( 2 . 3  ) 

Here 90, U0i are the steady, and p', u" the unsteady components of the density and velocity; 
and p' is the unsteady component of the pressure. In this case, P0 and Uo are given quan- 
tities, and p', p', and u' are unknowns being sought in the form 

p ' ~  pe ~t, p ' =  pe ~ ,  u ' ~  ue ~ ,  ( 2 . 4 )  

where ~ = ~(I + i6); 6 is a parameter characterizing the stability of the oscillations. 

The amplitude functions (2.4) must satisfy the following homogeneous boundary condi- 
tions: 

impermeability of the solid-wall boundaries S, including the moving blade surfaces: 

Uv=0  for p ~ S  ( 2 . 5 )  

(v! i s  t h e  d i r e c t i o n  o f  t h e  normal  t o  S, and p i s  t h e  f l u i d  p a r t i c l e  r a d i u s  v e c t o r ) ;  

a t  t h e  open ends  o f  t h e  n o n c i r c u l a t i n g  s e c t i o n  

p = 0  f o r , s ~ - ( l o +  l~), 12; (2.6) 

the Zhuskovsky-Kutta condition at the trailing edge of the blade c n 

[2]=0 for p~cn; (2.7) 

in the vortical wakes which trail the blade and are modeled by contact discontinuity 
surfaces ~: 

t u b ] = 0 ,  [ p ] = 0  for p ~  ( 2 . 8 )  

(v l  i s  t h e  d i r e c t i o n  o f  t h e  no rma l  t o  ~ ) .  

We s e e k  an a p p r o x i m a t e  s o l u t i o n  o f  t h i s  p r o b l e m .  Toward t h i s  end ,  c o n s i d e r i n g  ( 1 . 4 ) ,  
we i n t r o d u c e  t h e  s m a l l  p a r a m e t e r  

k = e. ( 2 . 9 )  

To s e c o n d - o r d e r  a c c u r a c y  O(E~) ,  t h e  e x p r e s s i o n s  f o r  t h e  c h a r a c t e r i s t i c  f u n c t i o n s  in  t h e  i n -  
t a k e  and t h e  d i s c h a r g e  p i p e  can be g i v e n  in  a n a l y t i c a l  fo rm.  These  e x p r e s s i o n s  can be r e -  
l a t e d  t o  one a n o t h e r  w i t h  t h e  h e l p  o f  t h e  i n t e g r a l  laws o f  t h e  c o n s e r v a t i o n  o f  mass and 
a c o u s t i c a l  e n e r g y ,  a p p l i e d  t o  t h e  f l u i d  f l o w  r e g i o n  in  t h e  v o l u t e  chamber .  

3. R e p r e s e n t a t i o n  o f  t h e  S o l u t i o n  i n  t h e  I n t a k e  P i p e .  B e a r i n g  i n  mind ( 1 . 2 )  and ( 1 . 3 ) ,  
we i n t r o d u c e  a n o t h e r  a s s u m p t i o n :  t h e  s t e a d y  component  o f  t h e  f l u i d  v e l o c i t y  in  t h e  i n t a k e  
p i p e  i s  assumed t o  have  o n l y  a l o n g i t u d i n a l  componen t ,  and i t s  modulus  i s  t a k e n  t o  be 

IUol = U~ = const. (3.1) 

Also considering the assumption that the flow is irrotational in the intake pipe, the 
amplitude function of the unsteady component of the velocity is represented using a potential 

u, = v~l ( s ) .  ( 3 . 2 )  
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In this case, the pressure is also determined through the function ~ with the help of the 
Cauchy-Lagrange integral: 

Pl = - -00( i0 )~1  + UGV~I ) .  ( 3 . 3 )  

S u b s t i t u t i n g  ( 3 . 2 ) ,  ( 3 . 3 )  i n t o  ( 2 . 1 ) - ( 2 . 3 )  and  u s i n g  ( 2 . 4 ) ,  we f i n d  

(t - -  M 2) ~ T -- 2ikM -YU + ~  ~ ,  = 0. 

H e r e  and  b e l o w  t h e  c o o r d i n a t e  s and  a l l  g e o m e t r i c  p a r a m e t e r s  a r e  c o n s i d e r e d  t o  be  d i m e n s i o n -  
l e s s  quantities, by relating them to b: 

M = U / c ,  k = ~ob/c = k ( t  + i6).  

We t a k e  

M = 0 ( ~ ) ,  6 = O ( s ) .  (3.4) 

Assuming (without loss of generality) that iepl/bc141, the solution to (3.3) satisfying condi- 
tion (2.6) for s = -(s + s can be represented in the following fashion: 

(Pl = Abce~iM(s+z~ [sin k (s + 1 o -I- l l )  @ iM cos  k ($ @- l 0 -~ l l )  ] ( 3 . 5  ) 

[A is an arbitrary constant of order O(i)]. 

Substituting (3.5) into (3.2) and (3.3), we find 

ul = Afcc exp [ikM (s + lo + ll) ] cos k (s + lo + I1) ; ( 3 . 6 )  

Pl = - i A k &  exp [ikM (s + lo + ll) ] sin k (s + l0 + ll). ( 3 . 7 )  

4. Representation of the Solution in the Volute Chamber. Unlike the fluid flow in the 
intake pipe, that in the volute chamber is highly nonuniform. We represent the unknown func- 

' p' in the volute chamber as the sum of two components: tions u , 
r t pf t p 

u' = Uo + u~, = Po + P~, 
! 

e a c h  o f  w h i c h  s a t i s f i e s  s y s t e m  ( 2 . 1 ) - ( 2 . 3 ) .  We a s s u m e  t h a t  uo, p~ m a t c h  up w i t h  t h e  s o l u t i o n  
i n  t h e  i n t a k e  p i p e  a t  s = - s  i . e . ,  

t s ! t 
u o , = u l ,  P o = P l ,  ( 4 . 1 )  

t 
and the condition that there be no circulation of the velocity u 0 about the contours L n of 
the turbine blade profile 

uodp = O. ( 4 . 2 )  
Lr~  

t v 
I n  a c c o r d a n c e  w i t h  t h e  o v e r a l l  s t a t e m e n t  o f  t h e  p r o b l e m ,  u~, p; w i l l  s a t i s f y  (12 .5 ) ,  ( 2 . 8 )  

a n d ,  a c c o r d i n g  t o  ( 2 . 7 ) ,  t h e  c o n d i t i o n  

It follows from (4.1) that at the entrance to the volute chamber 

u~s = 0, ; ----- 0 for S = -- l 0. 

Since the fluid flow ,in the intake pipe is potential, then using Thompson's theorem on (4.1) 
and (4.2) gives V Xu0 = 0. From this the following representation of u 0 is valid 

, , V%e(~t. U o = V% = (4.3) 

We assume that the acoustic perturbations of the fluid created by the turbine and veloc- 
ity potential *0 are equal at the entrance to the discharge pipe, so that 

r = const, u~,(p) = eonst, P0(P) = const fo r  s ----- 0. 
t t 

The fluid flow described by the functions uS, p~, is represented by the sum of purely circula- 
tional motion about the blading and motion induced by the unsteady vortical wakes that trail 
the blades. It can be shown that the flow has the property 

ui~)da = 0, (4.4) 
8~ 
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where S 2 is the cross section at the joint with the discharge pipe; u~ ) is the amplitude of 
'P I the projection of the velocity ~lonto the direction s in the incompressible fluid approxi- 

mation. 

5. Representation of the Solution in the Discharge Pipe. For an analytical description 
of the flow in the discharge pipe, we introduce a cylindrical system of coordinate (r, 0, s), 
assuming that the pipe cross section is circular. Neglecting the flow in the radial direc- 
tion, we will assume that the longitudinal component of the steady velocity satisfies con- 
dition (3.1), while the circumferential component is a function of the coordinate r only: 

U0 = U0 (r). 

Within the limits of these assumptions, system (2.1)-(2.3) is transformed in the following 
fashion: 

p0(~t + Uo.V) u' --Vp'; (5.1) 

t ( 0  \2 , 
c- ~ ~- + Uo.V ) p = hp' .  (5.2) 

We now give the unknown functions u' and p' as the sum of two components: 
! ! pt ~ i t 

' = p2 (s) + p~. u u ~ ( ~ ) + u , o ,  
t 

Here u2,!p~ a r e  t h e  v e l o c i t y  and p r e s s u r e  f u n c t i o n s  d e s c r i b i n g  t h e  o n e - d i m e n s i o n a l  a c o u s t i c  
o s c i l l a [ i o n s  o f  t h e  f l u i d  in  t h e  d i s c h a r g e  p i p e ;  and u:,  p~ a r e  t h e  c o r r e s p o n d i n g  f u n c t i o n s  
describing the wave motion induced by the vortical wakes. 

We will limit our discussion to mean integral values over the cross section S(s) of the 
amplitude functions: 

P~ = - ~  pwda ,  uw~ = --ff uw~da, u~o = --ff u~oda. 
s s 8 

Integrating Eq. (5.2) over S, we obtain 

( t -  M 2 ) ~  -- 2 ~ M ~  § ~2~ = O, 

where ~ = P2 + Pw" We represent the solution of this equation satisfying condition (2.6) 
for s = ~2 as: 

- ~M(~-t2) 
p =  -- iBkc29oe sin k ( s - -  l~) (5.3) 

(B is an arbitrary constant). 

Without losing generality, we assume 

P2=P,  fi~=O. (5.4) 

We determine the one-dimensional function u~ as a particular solution of (5.1), the right- 
hand side of which is expressed in terms of the function p~. As a result, the expression for 
the amplitude function u 2 takes the form 

[ ihM(s--l 0 (e3)]. ( 5 . 5 )  u~ = Bkc[e-  ~) cos k (s -- l~) + 

It is clear that one-dimensional acoustic oscillations of the fluid described by the functions 
u 2 and P2 are potential and the corresponding amplitude functions of the velocity potential 
can be represented in the following way: 

2 = Bcbei~I( ' -z~)  [ sin k (s --  le) + iM cos k (s --  l~) ]. ( 5 . 6 )  

Integrating (5.1) over the cross section S and taking (5.4) into account, we find 

(0__ 9)-, 
kOt +Us~ uw=O. 

From this we have 

uws = C-kco Us , uwo = Dkco  Us 

(C and D a r e  a r b i t r a r y  c o n s t a n t s ) .  
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Recall that the functions fiws and fiwO describe the fluid wave motion induced by the un- 
steady vortical wakes. Bearing in mind property (4.4) for the corresponding motion in the 
volute chamber, we obtain the estimate C = O(s 2) for the constant C. The constant D char- 
acterizes the unsteady twisted flow and can be determined with the help of theorems on the 
change in momentum in the fluid as a result of its interaction with the turbine. Thus, the 
conditions that the solutions in the discharge pipe join with that in the volute chamber can 
be represented in the form 

u i = u 0 [ l + O ( e i ) / ,  Pi=Po+~= for  S=O, ( 5 . 7 )  
1 

where ~ is the mean integral value of the amplitude function for the pressure component p~ 
in the volute chamber, coupled with the twisted flow in the pipe. The constant B for the 
functions u 2 and P2 and the constant A for the functions u I and Pz are determined from match - 
ing conditions, which as noted above, we will construct with the help of conservation laws. 

6. The First Matching Condition. Integrating Eq. (2.2) over the fluid flow volume in 
the volute chamber V 0 and applying the Gauss-Ostrogradskii theorem, we obtain 

or~ _ _ . (o0u, + 7  c ~ / 
Vo So 

(v is the outer normal to the boundary S 0 of the region V0). 

First we consider the volume integral in expression (6.1). 
the order of magnitude of the functions u" and p' in the region V 0. 
and (3.4), we have 

lu'l =cO(~), p'=podO(~). 

I t  f o l l o w s  f rom ( 2 . 1 )  and ( 2 . 2 )  t h a t  

tVu'l = cO(e2) ,  Ivp'l  = f ) o : O ( d ) ;  

I A u ' l  = cO(d), Ap' = p0c20(~3). 
Taking  ( 6 . 2 ) - ( 6 . 4 )  i n t o  a c c o u n t ,  we f i n d  

( 6 . 1 )  

Toward this end, we estimate 
According to (3.6), (5.5), 

( 6 . 2 )  

(6.3) 

(6.4) 

y .--VO T /  ' ' p'dv = ~-m [tP~ § Pi) q- 9oc'0(~3)], (6.5) 
8t  

V o 

where  p~, p~ a r e  t h e  u n s t e a d y  components  o f  t h e  p r e s s u r e  in  t h e  i n t a k e  p i p e  and t h e  d i s c h a r g e  
pipe at the joint sections with the volute chamber; their amplitude functions are determined 
by (3.7) and (5.3). 

To compute the integral over S o in (6.1), it must be borne in mind that part of S o is 
the surface S n of the rotating turbine blades. Moving around Sn as depicted schematically 
in Fig. 2 and assuming that at the boundary of the volute chamber U0 ~=u'-v=0, and at the 
blade surface u'.v=O, we represent this integral in the form 

N (! !)c E § < /<so- (6 .6)  
rl=l S'-~n 

(S 1 and S 2 a r e  t h e  c r o s s  s e c t i o n s  o f  t h e  v o l u t e  chamber a t  t h e  j o i n t  w i t h  t h e  i n t a k e  p i p e  
and t h e  d i s c h a r g e  p i p e ,  r e s p e c t i v e l y ) .  

In the case of uniform blading, the integrals over the surfaces of all blades will be the 
same. Applying for simplicity the hypothesis of plane cross sections and modeling the blades 
as impervious surfaces, we reduce these integrals to an iterated integral 

h 

0 L 

[h(s) is the blade height]. To compute integral (6.7), we represent Uo ~ in the form ,U0= 
[Jr +Ue (U, is the relative vector velocity in the coordinate system rigidly fixed to the 
rotating turbine; U~ is the translational velocity). Bearing in mind that 

U , . v = O ,  U e . v = ( o o X r ) . v = c o o r s i n ~  

( ~0 is the vector angular rotation rate of the turbine;' r is the radius vector of a point on 
the surface contour, relative to points lying on the axis of rotation; and ~ is the angle 
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between the vectors r find v)~ we find 

s 2 
,+ 

J z = f P ' U o . v & r = %  I ( p ' - - -  p )rsin~ds. ( 6 . 8 )  
L s 1 

Here s t and s 2 are the coordinates of the leading and trailing edges of the profile; the plus 
superscripts indicates that the appropriate value of p' is taken at the weather side of the 
surface, while the minus superscripts indicates that it is taken on the lee side. 

It is not difficult to see that integral (6.8) determines the unsteady components of 
the hydrodynamic torque acting on the profile, with respect to the rotational axis of the 
blading. Taking this into account, we represent the first term in (6.6) as 

N h 

~ p '  (% ~ , C0 o , 
~ U 0 �9 vd6 = -~-J MQdz = 9oM -7 R=.Qmqu2, ( 6.9 ) 

n = l  
Srt 0 

where  M~ i s  t h e  h y d r o d y n a m i c  t o r q u e  p e r  u n i t  l e n g t h  a c t i n g  on t h e  t u r b i n e  b l a d e  as  a r e s u l t  
o f  t h e  o s c i l l a t i o n s  o f  t h e  f l u i d  d i s c h a r g e  a c c o r d i n g  t o  t h e  law Q = p0au~; and mQ i s  t h e  d i -  
m e n s i o n l e s s  complex  c o e f f i c i e n t  o f  t h e  t o r q u e .  

Over the joint cross section Sj, 

]~ = 

the integral (6.6) has the form 

, M ,~ 2). f~ poUj~ + -TPJ) (] = 1 ,  (6.10) 

Substituting (6.5) and (6.6) into (6.1), and using (6.9) and (6.10), we obtain 

=, V 0 

We consider this relation as the 
determining the acoustic oscillations in the water intake and discharge pipes. 

7. The Second Matching Condition. We obtain the second matching condition with the 
help of the law of conservation of acoustic energy, which we will apply to the acoustic os- 
cillations described by the function ~p~ in the region V 0. In accordance with [3] and the as- 
sumptions that have be~n made, the conservation law in integral form is 

-g-f Edv + I. vd~ = Voc20 (e3), (7 .1)  
Vo So 

where  E, Ii a r e  t h e  d e n s i t y  and t h e  v e c t o r  f l u x  i n t e n s i t y  o f  t h e  a c o u s t i c  e n e r g y :  

I Po 2 , , 

E = ~  + P o ~  + P o _ ' . U 0  ' I =  + u o ' U o  9oU0+ U0 �9 7 Uo \ P0 , 

For the amplitude functions of the unsteady components of the flow parameters, we use 
(4.3) to transform relation (7.1) to the following form of order V0c20(e2): 

(6.11) 

first matching condition for the unknown functions 

V 0 S o 

First we consider the volume integral in (7.2). Since the function ~0 is unknown, this inte- 
gral, like (6.5), will be determined by the fluid flow parameters in the intake and discharge 
pipes in the joining sections Sj using (4.1) and (5.7). It should be noted that ~ in rela- 
tion (5.7) is unknown. To find it, we apply the law of conservation of mass to the acoustic 
oscillations described by the function ~ in the region V 0. Proceeding as in Sec. 6, we ob- 

tain 

.v Vo ~ 
2-~ ' )  Pt = u2 + p0 c ~ poe2 u t + + ( M _  "-V~ fl~- (M + ~k -u~) po + - -  Mo + cO (e3 ), ( 7 . 3 )  

where  M0 i s  t h e  a m p l i t u d e  o f  t h e  u n s t e a d y  component  o f  t h e  h y d r o d y n a m i c  t o r q u e  a c t i n g  on 
t h e  b l a d i n g  w i t h  c o n d i t i o n  ( 4 . 2 ) .  The v a l u e  o f  M o can be d e t e r m i n e d  w i t h  t h e  h e l p  o f  t h e  
t h e o r e m  on t h e  change  in  f l u i d  momentum in  t h e  v o l u t e  chamber .  E x p r e s s i n g  t h i s  change  in  
t e r m s  o f  t h e  f l ow  p a r a m e t e r s  a t  t h e  v o l u t e  chamber  e n t r a n c e  and e x i t ,  and b e a r i n g  in  mind 
that in the present case u0=O when s = O, we find 
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P 
310 = --  p0u. [1 + 0 (~)] j Uordcr. 

82 

Computing ( 7 . 3 )  f rom ( 6 . 1 1 )  and u s i n g  ( 5 . 7 ) ,  ( 7 . 4 ) ,  we have  

/3: (M + ikVo) = -- pocooR=u2 (Mmq + rn, (Uo)), 

where 

(7.4) 

1 f Uor&r. tro =- Vo/2f2b; m~ (Uo) = ~ s2 

We now write the adhesion condition for ~0 when s = O: 

% ( 0 ) = - ~  + %U, =- q%(O)--~ pg . ( 7 . 5 )  
Po o3 

Using ( 7 . 5 )  and p r o c e e d i n g  as in  See .  6, we o b t a i n  f rom ( 7 . 2 )  t h e  e x p r e s s i o n  

which we r e g a r d  as t h e  second  ma tch ing  c o n d i t i o n  f o r  t h e  unknown f u n c t i o n s .  

8. E i g e n v a l u e s  and E i g e n f u n c t i o n s .  S u b s t i t u t i n g  ( 3 . 5 ) - ( 3 . 7 ) ,  ( 5 . 3 ) - ( 5 . 6 )  i n t o  ( 6 . 1 1 )  
and ( 7 . 6 ) ,  we f i n d  

A exp (ikM (ll + l:) ) [cos kll - (kFo + iM) sin k[l] = B  [cos ~l~ + iN sin/~12 -- ~Vo sin k/2] ; ( 8. i ) 

A: exp (2/~'M (/1 q-1,))[--1.9(1 q- M2)sin 27dl + ( i M  + kVocos 2k/,) 1 = 
t .  

= -- B z [(cos kl. + iM sin k'l~) (sin klo--iM coskL) + kVo cos 2k'/o--k-~cos2 k-/.], ( 8 . 2 )  
where 

%R~ mQ~I + m z (U0) @ = ~' + iO"---- i~ 
~b M § i~V 0 " 

Squaring the left- and right-hand sides of (8.1), we have, in conjunction with (8.2), 
a homogeneous system of algebraic equations in terms of the unknowns A 2 and B:. From the 
condition that the determinant of the system equal zero, we find the complex eigenvalues for 
this problem to order O(s2): 

-Ic~ = ~_"n ( l  + ic~ kz2 ) l ~  
lO , l l~ ,  11_~12 (I)" ( r e = l , 2  . . . .  ); ( 8 . 3 )  

l j §  + n  ~ - i ( - - t )  j ( ] = t , 2 ;  n = 0 , 1 , 2  . . . .  ). ( 8 . 4 )  

Here E0 = 2V0 - r  cos  2 kE2 i s  t h e  d e r i v e d  e f f e c t i v e  l e n g t h  o f  t h e  v o l u t e  chamber .  Using 
( 8 . 3 )  and ( 8 . 4 ) ,  we o b t a i n  t h e  f o l l o w i n g  r e l a t i o n s  f rom ( 8 . 1 ) :  

21-7 0 + (I) c(,s z kl~ 
B,~=(--l)mexp(iffM(l~+L.)) 1+ v-7--f- A,,, B ~ n = A 2 ~ = 0  , ( 8 . 5 )  

ll-Y 2 ] 

s u b s t i t u t i n g  t h e s e  i n t o  ( 3 . 5 )  and ( 5 . 6 ) ,  we f i n d  e x p r e s s i o n s  f o r  t h e  e i g e n f u n c t i o n s  in  t h e  
i n t a k e  and d i s c h a r g e  p i p e s .  

9. R e s u l t s  and D i s c u s s i o n .  The s e t  o f  e i g e n v a l u e s  o b t a i n e d ,  whose domain o f  d e f i n i t i o n  
i s  l i m i t e d  by c o n d i t i o n  ( 1 . 3 ) ,  can be d i v i d e d  i n t o  t h r e e  s u b s e t s :  

{km} a r e  t h o s e  e i g e n v a l u e s  d e t e r m i n i n g  t h e  c h a r a c t e r i s t i c  f r e q u e n c i e s  o f  t h e  f l u i d  o s -  
c i l l a t i o n s  in the circulating section, whose total length ~ is multiplied by half of the cor- 
responding wavelength: 

l lo4-1 ~ [-I 2 m ~  (~m cTm 2z~bl 
- k m / 

{kin) are those eigenvalues determining the characteristic frequencies of the fluid os- 
cillations in the water intake (j = i) and discharge (j = 2) pipes, whose lengths, constructed 
serially from the effective half-length of the volute chamber, are multiplied by one quarter 
of the corresponding wavelengths: 
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lj + Vo = (| -]- 2n ) -~  (tin = 2rib ~ 

I t  f o l l o w s  from ( 8 . 5 )  t h a t  t h e  u n s t e a d y  components  o f  t h e  f l o w  p a r a m e t e r s  c o r r e s p o n d i n g  
to the elements of subset {km} are discontinuous functions of s. In this case the amplitude 
of the flow velocity oscillations near the turbine is close to its maximum value. For those 
oscillations corresponding to elements of the subset {kjn}, the amplitude of the velocity 
oscillations near the turbines is equal to zero, while the unsteady components of the pres- 
sure undergo a jump across the turbine. The latter condition indicates that these oscilla- 
tions cannot be realized separately, since the jump in the unsteady pressure component can 
arise only during unsteady circulational flow, which in turn is proportional to the amplitude 
of the fluid oscillations near the turbine. They are engendered by the oscillations corre- 
sponding to elements of the subset {km} and are pr_oduced together with them as a unit. The 
mechanism whereby oscillations corresponding to {kjn} arise is evidently related to the non- 
linear interaction of the turbine with the unsteady flow, whose description is implicitly 
contained in the second matching condition. Thus we call such oscillations quasicharacter- 
istic. Their existence is supported by the results of experiments carried out by Arm [4]. 
The fluid oscillation frequencies in the circulating section of the hydraulic turbine, which 
result from spectral analysis of natural phenomenon in [4] agree to order cO(e)/b with fre- 
quencies ml (m = i), ml0 computed from (8.3), (8.4). The experimentally established fact of 
steep growth in the oscillation intensity near conditions of maximum fluid discharge also 
agrees with the theoretical results obtained here. According to (8.3), the observed phe- 
nomenon can be interpreted as oscillational instability, for which the following inequality 
serves as a condition 

r -- " ~ P 

([Y' M r176176 'nz (U.) -r kVo'n Q T MmQ -= < (), 
~b M2 . ~2~Y~ 

T ~  ~0 

s i n c e  f i r s t ,  unde r  t h e s e  c o n d i t i o n s  m~(U0)<O, and s e c o n d ,  a c c o r d i n g  t o  t h e  t h e o r y  o f  b l a d i n g  
in unsteady flow, in separating and near-separating conditions there is a high probability of 
a change in sign from positive to negative in both the imaginary and real parts of the coef- 
ficient of the unsteady component of the momentum mQ. It should be noted that the theoretical 
determination of the coefficients for mQ is quite complex, even for unseparated blading flow 
[5, 6]. Experimental results obtained for axial blading [7] give some representation of the 
behavior of the unsteady hydrodynamic characteristics in separated flow regimes. 
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